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A technique has been developed which enables two important classes of wave-
guide discontinuity problem to be solved on a computer by simple numerical meth-
ods. The classes are:

1. Transverse discontinuities.
2. Longitudinal discontinuities.

Examples of the first class are (i) a step-change in waveguide cross-section
where the step lies entirely in a plane transverse to the direction of propagation;
(ii) a step-change in the cross-section of a dielectric contained within a homogen-
eous waveguide as in Fig. 1.; (iii) a combination of (i) and (ii); (iv) discontinuities
of finite thickness made up from two steps of kinds (i) or (ii) as in Fig. 2(a). In
the above cases, our method enables the complex reflection and complex transmis-
sion coefficient of the propagating modes to be determined with high accuracy; the
method is, in principle, unrestricted in the number of propagating modes. In simple
cases we have obtained the equivalent circuit parameters and have made favourable
comparison with values obtained by analytic and experimental methods. An example
belonging to the second class is provided by a waveguide of uniform cross-section
containing a slot of uniform width in a waveguide wall of finite thickness, as in
Fig. 3. The slot discontinuity thus lies in a longitudinal plane with respect to the
direction of propagation. In this case, the method enables the complex propagation
coefficient of the leaky-waveguide modes to be determined without restriction on
the slot width. We have applied the method to the case of a slotted circular wave-
guide and have obtained results which agree precisely with experiment. Another
example belonging to the second class is provided by the coupled waveguide of
Fig. 4.

A description of the method, as applied to class 1, has been given previously
by the authors {1) and the results shown in Figures 1 and 2 provide an indication
of the accuracy which may be obtained. The extension of the method to the second
class of problem follows rather closely that for the thick iris and, in the interest of
brevity, in this abstract only this case will be described in outline form.

Fig. 2(b) shows a general schematic equivalent circuit representation for the
thick inductive iris of Fig, 2(a). If E; and H, are the transverse electric and trans-
verse magnetic fields in the waveguide respectively, then the boundary conditions
over the aperture at A and B lead to equations (1) through (4).
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We now transform the equa'nons to a form svitable for numerical analysis. Vec
tor post-multiply equation (1) by Hf and integrate over the aperture. By using the
boundary condition that the left- hand side of equation (1) is zero over the iris and,
on utilizing the well- knOWn orthogonality relahon, we obtain equation (5)
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Vector pre-multiply the conjugate of equation (2) by E4)y integrate over the aperture
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and use orthogonality on the righf-hand side of the equation.
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Equations (3) and (4) are similarly modified to give equations (7) and (8).
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In our method the infinite series are terminated after a finite number of terms
yielding four finite sets of equations which may be solved simultaneously, to obtain
the reflection and transmission coefficients for the iris. It is not necessary, in-
cidentally, to choose the same number of terms in each series.

We have performed calculations for an iris of thickness ®/a = 0.035 with
a/Ae =0.8. Seven modes are used in each region and the error compared with the
final extrapolated value, over the range 0.2 < d/a < 0.8, is less than 1%. Compari-
son with results obtained by other authors is shown in Fig. 2(a).

The analysis of a longitudinal discontinuity such as that depicted in Fig. 3,
proceeds in a manner similar to the thick iris. If a transverse modal representation
is chosen, following Goldstone and Oliner(2) application of boundary conditions at

r=rqand r =r_ + & and use of orthogonality conditions, leads to the four equations
given below.
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As before, the series are truncated after a finite number of terms. The modal terms

Vm(])(ro), etc., comprise a complex coefficient and a complex function, dependent

upon the complex propagation coefficient. When appropriate substitutions are made

for these functions, a system of simultaneous equations result and, if M modes are
included in each region,8 x M equations result. The condition that the determinant
of these equations shall vanish provides a means for evaluating the complex propa-
gation goefficient. This has been done for the case of a circular waveguide support-
ing an Hyp leaky waveguide mode. The number of modes taken in each region does
not have to be the same and, in our evaluation, 9 modes were chosen in the inner
and outer regions and 3 in the slot. Fig. 3. shows the normalized phase-change
coefficient and normalized attenuation coefficient as a function of normalized
waveguide radius. The results are compared with the experimental results of

Goldstone and Oliner'“/ and their theoretical results, obtained by use of perturba-

tion and small aperture formulae.

The extension of this technique to other microwave discontinuity problems is
under consideration. Taken in conjunction with finite-difference methods, problems
such as the step-discontinuity between two waveguides of arbitrary cross-section
should be amenable to solution.
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