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A technique has been developed which enables two important classes of wave-

guide discontinuity problem to be solved on a computer by simple numerical meth-

ods. The classes are:

1. Transverse discontinuities.

2. Longitudinal discontinuities.

Examples of the first class are (i) a step-change in waveguide crass -sectian

where the step lies entirely in a plane transverse to the directian of propagation;

(ii) a step-change in the cross-section af a dielectric contained within a homogen-

eous waveguide as in Fig. 1.; (iii) a combination of (i) and (ii); (iv) discontinuities

af finite thickness made up from twa steps of kinds (i) or (ii) as in Fig. 2(a). In

the above cases, our method enables the camplex reflection and complex transmis-

sion coefficient of the propagating modes to be determined with high accuracy; the

method is, in principle, unrestricted in the number of propagating modes, In simple

cases we have obtained the equivalent circuit parameters and have made favorable

comparison with values obtained by analytic and experimental methods. An example

belonging to the second class is provided by a waveguide of uniform cross-section

captaining a slat of unifarm width in a waveguide wall of finite thickness, as in

Fig. 3. The slat discontinuity thus lies in a Iangitudinal plane with respect to the

direction of propagation, In this case, the method enables the complex propagation

coefficient of the Ieaky-waveguide modes ta be determined without restriction on

the slot width. We have applied the method to the case af a slotted circular wave-

guide and have obtained results which agree precisely with experiment. Anather

example belonging to the second class is provided by the coupled waveguide of

Fig. 4.

A description af the method, as applied to class 1, has been given previously

by the authors (1) and the results shown in Figures 1 and 2 provide an indication

of the accuracy which may be obtained. The extension of the method to the secand

class of prablem follaws rather closely that for the thick iris and, in the interest of

brevity, in this abstract only this case will be described in outline form.

Fig. 2(b) shaws a general schematic equivalent circuit representation for the

thick inductive iris of Fig. 2(a). If ~+ and Jj+ are the transverse electric and trans-
verse magnetic fields in the waveguide respectively, then the boundary conditions

aver the aperture at A and B lead to equations (1 ) thraugh (4).
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(2)

(3)
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We now transform the equations to a form suitable for numerical analysis. Vec

tor past-multiply equation (1) by ~t~ and integrate over the aperture. By using the

boundary condition that the left-hand side of equation (1) is zero over the iris and,

on utilizing the well -knawn orthoganality relation, we obtain equotian (5).

Vectarpre-multi plytheconiugate o~eq~ation (2) by~tM integrate aver the aperture

and use orthogonality on the right-hand side of the equation.

Equations (3) and (4)aresirnilarlY modified to give equations (7) and (8).

M= 1. 2, ‘a. . ~
In our method the infinite series are terminated after a finite number af terms

yielding four finite sets of equations wh ich may be solved simultaneously, to obtain

the reflection and transmission coefficients for the iris. It is not necessary, in-

cidentally, to choose the same number of terms in each series,
We have performed calculations for an iris of thickness ~/a = 0.035 with

a/~* = 0.8. Seven modes are used in each region and the error compared with the

final extrapolated value, over the range 0.2< d/a <0.8, is less than 1%. Compari-

son with results obtained by other authors is shown in Fig. 2(a).

The analysis of a longitudinal discontinuity such as that depicted in Fig. 3,

proceeds in a manner similar to the thick iris. If a transverse mods I representation

is chosen, foJ lowing Goldstone and 01iner(2) application of boundary conditions at

r = roand r = r. + Q and use of orthogonality conditions, leads to the four equations

given below.
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(2)
Stm x ~;’)

(2)
(rO).& rde - Im (ro) = 0.

(lo)

n m
+*

=0,1 . ..m

js$j)xh~~)(ro+ t). &rde-V~3)(ro+ L) =0(11)
A

As before, the series are truncated aftera finite number af terms. The madal terms

Vm(l)(ro), etc. , camprise a complex coefficient and a camplex functian, dependent

upon the complex propagation coefficient. When appropriate substitutions are made

for these functians, a system of simultaneous equatians result and, if M modes are

included in each region,8 x M equations result. The condition that the determinant

af these equatians shall vanish pravides a means for evaluating the complex propa-

gation ~oefficient, This has been done for the case af a circular waveguide support-

ing an H1l leaky waveguide made. The number of mades taken in each regian does

nat have ta be the same and, in aur evaluation, 9 modes were chasen in the inner

and auter regions and 3 in the slat. Fig. 3. shows the normalized phase-change

coefficient and normalized attenuation coefficient as a function of normalized

waveguide radius. The results are campared with the experimental results of

Galdstane and Oliner(2) and their theoretical results, abtained by use af perturba-

tion and sma II aperture formulae,

The extensian af this technique ta ather micrawave discontinuity prablems is

under cans ideration. Taken in caniunctian with finite-difference methads, problems

such as the step-discontinuity between twa waveguides af arbitrary cross-section

should be amenable to salution.
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